4/7p^2=20

Simple and best practice solution for 4/7p^2=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/7p^2=20 equation:



4/7p^2=20
We move all terms to the left:
4/7p^2-(20)=0
Domain of the equation: 7p^2!=0
p^2!=0/7
p^2!=√0
p!=0
p∈R
We multiply all the terms by the denominator
-20*7p^2+4=0
Wy multiply elements
-140p^2+4=0
a = -140; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-140)·4
Δ = 2240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2240}=\sqrt{64*35}=\sqrt{64}*\sqrt{35}=8\sqrt{35}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{35}}{2*-140}=\frac{0-8\sqrt{35}}{-280} =-\frac{8\sqrt{35}}{-280} =-\frac{\sqrt{35}}{-35} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{35}}{2*-140}=\frac{0+8\sqrt{35}}{-280} =\frac{8\sqrt{35}}{-280} =\frac{\sqrt{35}}{-35} $

See similar equations:

| 2-8b-2b=12 | | 14v=36+8v | | (b/10)+(b/4)=7 | | -7x-7+5x=-5 | | 1/2s=-30 | | 3(-2x-5)=-1 | | 3^x+5=4+3^x+3 | | -4x+2=6x+1 | | -6x-1=-26/5 | | 3/4=9/7x+5 | | 3x2–12=–12 | | -4x+2=6+1 | | 10x-6x+2=18 | | 2k–4=4 | | 3^x=1/54 | | .50x+0.45(50)=25.5 | | 1=2y–3 | | 68=6x+7x+3 | | 2/7(x-4)=-6 | | -15+6x=0.5(8+12x)-19 | | 34+3a=-7(1+a)=1 | | g-3+ 12= 14 | | 2/7(x=4)=-6 | | -2x+6=3-2x | | 20(3+s)=120 | | 5x+19x-6=6(4x+7) | | 8–3z=2 | | a+(−7)=−17 | | 5x+11+4x-5=3+24 | | 4x+20x-8=6(4x+8) | | x(x+6)=176 | | 2x3x-4x3x-2=150 |

Equations solver categories